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We discuss computer solutions of Newton's equations of motion for unstable 
systems in a container with time-dependent walls. An expansion leads to the for- 
mation of a cluster and a significant increase of the temperature. The question 
of entropy increase for expansion and compression of the system and the related 
problem of the feasibility of a perpetum mobile of the second kind are 
investigated. 

KEY WORDS: Unstable systems; cluster formation; passivity; computer 
simulation; second law of thermodynamics. 

1. I N T R O D U C T I O N  

It is generally believed that at the big bang the universe was in thermal 
equilibrium, but today the interior of stars is about 10 7 K, whereas the 
interstellar space is only 3 K. It seemingly contradicts our ideas of thermal 
equilibrium that such vast temperature differences can develop. In previous 
publications (1-3) we have suggested that this phenomenon is a consequence 
of the negative specific heat of thermodynamically unstable systems. 
Classical particles with attractive forces show this feature and numerical 
solutions of the equations of motion have revealed that such systems 
developed hot clusters out of homogeneous statesJ 3 5) In this paper we 
report the results of computer simulations which include another feature of 
the history of the universe, namely its expansion and ultimate contraction. 
The computer solution of Newton's equation of motion shows exactly the 
surprising features mentioned at the beginning. We start with a hot 
homogeneous state which does not change with time. Upon expansion the 
system does some work so that its energy decreases. In this way it comes 
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into the region of negative specific heat and the homogeneous state is not 
stable any more. A hot cluster containing a good fraction of all particles is 
formed. If we stop the expansion, this cluster eventually heats the sur- 
rounding gas (Boltzmann's heat death). If we subsequently contract the 
system, the cluster is evaporated again, but once the original volume is 
reached, the total energy is higher than at the beginning. This means that 
work has to be done on the system: even unstable systems do not act as 
a perpetuum mobile of the second kind. 

It is sometimes suggested that the entropy will decrease when the 
universe eventually contracts. When discussing this issue in our Newtonian 
model, we have to note the following facts: 

(a) We are dealing with a Hamiltonian system and thus the total 
entropy (Gibbs entropy) S =  - ~  dg'2 N p(N)In p(N) is a constant even if the 
confining potential is time dependent. Here, p(N) is the density in the 
N-particle phase space, and ds u is the volume element. 

(b) If we study an individual orbit, we are in a pure state (p(N) is a 
6-function) and S =  -oe.  To get something meaningful we have to intro- 
duce a finite grain size in phase space. The Boltzmann entropy SB = 
-~df21 p(1)lnp(1)is obtained by reducing p(N) to D (1), the one-particle 
density in the one-particle phase space. These reduced entropies can change 
with time, but they can increase or decrease [Remark3 following 
Eq. (A6)]. We have reduced this p(~)(x, p) further to the configuration and 
momentum space. The corresponding x- and p-entropies (SBx and SBp) 
show the following time dependence. When a cluster develops, SBx 
decreases, since the spatial density becomes more concentrated. On the 
other hand, S~p increases, since the cluster becomes hotter. In fact, the for- 
mation of the cluster sets in when the latter effect dominates the former, 
and the total one-particle entropy increases upon the formation of a 
cluster. Snx and SBp can be considered as special coarse grainings, and thus 
the question of whether the entropy increases or decreases depends on the 
kind of coarse graining one chooses. In particular, SBp decreases upon con- 
traction, since kinetic energy is used up for the evaporation of the cluster. 
(An analogous effect for stable systems has been predicted by Jaynes. (7)) 
However, if in the contracted system the original volume has been 
regained, the total one-particle entropy is higher than at the beginning. 
Thus, with the provisions mentioned above, we cannot see any support for 
the speculation of entropy decrease at the big crunch. 

In the computer simulations reported here a smooth short-range 
--x2 

potential v ~ - e  was used. However, the effects studied do not depend 
on the detailed form of the potential. This has been shown in another study 
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(to be published separately) by employing a smoothed potential v~  
-1/(x2 + o2) ~/;. As expected, there is no qualitative difference as far as the 
effects studied in this paper are concerned. The long-range case shows some 
additional collective phenomena. Their study requires systems with a much 
larger number of particles and, hence, more computer time. 

2. C O M P U T E R  S I M U L A T I O N  OF CLUSTERING 
PHASE T R A N S I T I O N  

We consider a system of N attractively interacting classical point 
particles confined to a container with (possibly moving) walls of volume 
V(t) s R ~. The Hamiltonian is written as 

[7[ N = -~ ~ ( X N )  -[- W ( X N ,  t) 

N-1 u (2.1) 

i = l  j = i + l  

where X~v= (xl, x2,..., XN) is a point in N-particle configuration space, and 
x iz  V(t). Here W(XN, t) is the purely repulsive interaction energy with the 
walls of the container. In the following only two-dimensional systems are 
considered, d =  2, with the volume V= L z a square. This restriction is for 
purely economic reasons and constitutes no serious limitation: all the 
results apply to higher-dimensional systems as well. 

To make contact with previous work, we consider three models for the 
pair potential v: 

A: Gaussian model (z-5's) 

v(x, y ) = e  -It -x)~/~z (2.2) 

B: Multiple-cell model (2'4'6) 

M 

v(x, y) = ~ ZvjtX) Zvj(Y) (2.3) 
j = l  

where the Vj are a partition of the volume V into M cells, Uj vs = V, 
Vi c~ Vj= 6 o. Vj, and the characteristic function 

xeVj 
o,  r 

C: Single-cell model (l'3'9) 

v(x, y)=zvo(x)zzo(y) ,  r o c  V (2.4) 
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In the following, reduced units will be used for which the particle mass m 
and the potential  parameters  x and a are unity. 

In the cell models B and C, which constitute a discretization of the 
cont inuous Gaussian model  A, the part i t ion function may  be evaluated 
exactly, yielding an analytic expression for the equilibrium temperature T 
as a function of  the total energy E of the system. To demonstra te  this 
relationship, we introduce reduced energy and temperature parameters  by 

2E 
e = 1 -t (2.5) 

N ( N -  1)~ 

4K 2kB T 
0 = dN2~ Ntr (2.6) 

where the dimension d = 2, and kB is Bol tzmann's  constant  (set to unity by 
an appropr ia te  choice of the temperature scale). K is the kinetic energy. 
The relation 6)(e) as computed  from the cell models B and C is shown by 
the dashed curve in Fig. 1 ( N =  400, M =  1600). The discontinuity at the 
transit ion energy e =e~  = 1.0024 indicates a phase transit ion between a 
homogeneous  gaseous phase (e > e~) and a clustered phase (e < e~). For  the 
latter the slope of 6)(e) is negative, indicating a negative microcanonical  
specific heat Cv. Only for such small energies e < 0 . 4  (off the scale of  
Fig. 1) does this slope become positive again, signaling "normal"  behavior  
for e v  . (2"4) 
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Fig. 1. Plot of the reduced temperature O [-defined in (2.6)] versus the energy parameter e 
[defined in (2.5)]. The dashed curve connects all (analytical) equilibrium states for the 
multiple-cell model B. For e = e; = 1.024 a phase transition occurs between a clustered phase 
(e < e~) and a homogeneous phase (e > e~). The full curve traces the state variations during 
the cyclic process for the simulated Gaussian model A as outlined in the text. The four stages 
of the simulation are marked. Full dots indicate equilibrium states. 
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In the clustered phase a significant amount of all available particles 
are contained in the cluster. Its spatial extension is small enough to fit into 
a single small subvolume V0 c V. Instead of introducing a whole partition 
of the volume V into M cells as in model B, it is sufficient to consider a 
single subvolume Vo. In this sense model C, which was historically first, is 
a simplified version of model B yielding identical results. If Nc denotes the 
number of particles in Vo, a cell-model estimate for N~ gives Nc~  
2N/In(V/V0). Taking Vo = aa, a = 1 being the range of the potential, one 
finds Nc ~ 120 for N =  400 particles. This number agrees surprisingly well 
with computer-simulation results reported below (Nc ~ 140). 

The continuous potential (2.2) of the Gaussian model A is of short 
range and free of singularities. It is therefore well suited for numerical 
simulations using the methods of molecular dynamics. In the past such 
simulations were carried out to study both the equilibrium (4) and dynami- 
cal (3'5) properties of such N-body systems in two dimensions. 

In a short film (8) the collapse of an initially homogeneous system onto 
a cluster containing a considerable fraction, Nc/N~ 1/3, of the available 
particles and floating in a rest atmosphere formed by the remaining par- 
ticles may be observed. In all these simulations the system volume V was 
constant, and periodic (toroidal) boundary conditions were used. Also, the 
cluster formation in one-dimensional systems has been studied recently. ~~ 

We have performed a computer simulation of a cyclic process leading 
from an initial homogeneous equilibrium state through a collapsing phase 
transition to a collapsed equilibrium state and back again into the 
homogeneous phase. This is achieved by an adiabatic expansion from an 
initial volume V to a volume Vc > V for the collapsed system followed by 
an adiabatic compression to a volume V' identical to the initial volume V. 
For the evaluation of the work performed by the system on the outside 
world, periodic boundary conditions are not suitable. Therefore, repulsive 
boundary conditions are used with the particles confined to a square 
volume V ( = L  2) located symmetrically around the origin: 

N 
w(xN, t)= E w(xi, t) 

i=1 
w(x, t) = 10[~2(t) + s  

(~,~)= 

I S 
(Ixl, l y l ) -  2, if I x l , [ y [ > ~  

S 
~0, if Ixl, lyl~<~ 

x = ( x ,  y ) ,  s ( t )  = L ( t )  - 2 G  

(2.7) 



560 Posch e t  al, 

The expansion (compression) is achieved by moving the cell walls with 
constant speed vL= �89 (<0),  and the rate of work performed by 
the system 

_ ~?W(X u, t) 
vr>O (<0)  (2.8) 

a(L/2) 

Equations (2.1), (2.2), and (2.7) completely define the model solved 
numerically in the following. The equations of motion for N = 400 particles 
in two dimensions (d=  2) are integrated with a Gear predicto~corrector 
algorithm in the N-representation ~ and correct through terms of order 
At 3. A time step At = 0.0025 was used conserving the total energy to within 
0.01% for isochoric simulation runs of 4 million time steps. 

To carry through this cyclic perturbation a homogeneous equilibrium 
state G must be prepared serving as initial condition for the simulation. In 
a first step all N particles are distributed randomly over the square volume 
V= 800. The velocity components v~ are taken as equally distributed in 
- v 0 <  v~ < v0, v0 = [3K(O)/Nm] u2, and K(0)= 1600 is the initial kinetic 
energy. Starting from this initial condition, the system reaches equilibrium 
within 1000 time units (=400,000 time steps) keeping V and E constant. 
A snapshot of this equilibrated configuration G is depicted in Fig. 2a. 

For the completion of the cyclic process, four computational stages are 
required: 

Stage I. Expansion (1000 < t < 1200): During this stage the box size 
L is increased linearly in time increasing the volume to Vc = L 2 = 2000. The 
total energy decrease of the system is 

E c - E = - f  Jtdt<O 

pushing the system below the transition energy E t for the collapsing phase 
transition, Ec < Et. As a consequence, cluster formation sets in. In Fig. 1 
the variation of the instantaneous state parameters O and e defined in (2.5) 
and (2.6), respectively, are indicated by the full line with the four stages of 
the cyclic process appropriately marked. A comparison with the dashed 
curve linking equilibrium states obtained for cell model B reveals that the 
transition energy for the simulated Gaussian model A (estimated from 
Fig. 1 as e, ~ 1.01) is somewhat lower than the cell model result e~-C- 1.024. 
The homogeneous Gaussian-model state G (Fig. 2a) lies already in the 
clustering regime for the cell model. In view of the difference of the 
involved potentials, such a (minor) discrepancy is only to be expected. The 
variations of the instantaneous kinetic energy K = z N = I  p~/2 and the 
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potential energy #5 with box size L(t) are depicted in Figs. 3a and 3b. 
Equilibrium states are indicated by dots. 

Stage II. Cluster formation and equilibration at constant energy Ec 
and volume Vc (1200< t <  13200): At the end of stage I the system is far 
from equilibrium and relaxes only very slowly toward the clustered equi- 
librium state C. In Fig. 4 the variation of the instantaneous values of the 
involved energies as a function of t is shown. As inferred from this figure, 
about 12,000 time units are needed by the system to approach C, the 
reason being the weak collision cross section associated with the short- 
ranged potential (2.2). During stage II the temperature in the condensing 
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Fig. 2. (a) Snapshot of a homogeneous gaseous configuration G serving as initial condition 
for the cyclic process. The diameter of the particles is the inflection point of the pair potential 
(2.2), D = 1/x/2; the system volume V =  800. (b) Snapshot of a clustered state C at the end 
of the equilibration stage II; V~.- 2000. 
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cluster increases quickly and proportionally to Arc, the number of particles 
in the cluster, whereas the temperature of the surrounding atmosphere 
remains much cooler for a long period of time. Only at the end of stage II 
do these temperatures become equal. The dynamical properties of this 
cluster formation have been studied in detail in ref. 3. A snapshot of the 
equilibrated clustered configuration C is depicted in Fig. 2b. 

Stage III. Compression (13,200 < t < 13,400): During 200 time units 
the box size L is decreased linearly in time with speed --2VL, thus 
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Fig. 3. (a) Instantaneous kinetic energy K as a function of the box size L for the four stages 
of the simulation distinguished in the text. The four stages are appropriately marked. Full dots 
indicate equilibrium states. (b) Instantaneous potential energy @ versus box size L for the 
cyclic process described in the text. The four stages distinguished in the text are appropriately 
marked. Full dots denote equilibrium states. 
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Fig. 4. Variation of the instantaneous values for the kinetic energy K, the potential energy 
�9 , the interaction energy with the wall W, and the total energy E as a function of time t of 
the simulation. The four stages distinguished in the text are appropriately marked. 

decreasing the system volume back to V again. During this stage A < 0 and 
the energy increases to E ' >  E,. The cluster starts dissolving again. 

Stage IV. Cluster dissolution and equilibration at constant energy 
E' and volume V (13,400< t <  18,400): The system is left far from equi- 
librium after stage IH and requires considerable time to reach a new 
homogeneous equilibrium state G' (Fig. 4). 

The variation of the instantaneous energies E, ~b, W, and K during all 
stages of the cyclic process are depicted in Figs. 1, 3, and 4. As expected, 
the final potential energy is practically identical to its initial value at the 
start of the cycle. The main result of this numerical exercise is that the total 
energy E' at the end of the cycle always exceeds its initial value E. The 
significance of this result and its connection with the second law of 
thermodynamics will be discussed in Section 4. 

3. CALCULATION OF COARSE-GRAINED ENTROPIES 

The Gibbs entropy is defined by 

S = -ameN fl(N)(g'2N) In fl(N)(~-2N) dg'2 N (3.1) 
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where d Q  N =- d2xl . . .  d2XN dZpl . . .  d2pN,  and the N-particle distribution 
p(N) is normalized according to 

f p(N)(~N) df2;v = 1 (3.2) 

S is a constant of the motion even in the presence of an external time- 
dependent perturbation W(XN, t) such as in (2.1). If there is anything to be 
learned from the concept of entropy, reduced distribution functions must 
be used. The general properties for such reduced entropies are given in 
Appendix A. In particular, the following inequalities are obtained from 
(A.5) for a system of N particles: 

Here, 

S<. NSu <<. N(SBx + SBp) 

SB = -- f p(l)(g21) In p(1)(Ql) dQ 1 

(3.3) 

(3.4) 

with 

p(1)(~t'21 ) = f P(N)(~-2N) dQN_ l, f pO)((21) d(2~ = 1 

is the familiar Boltzmann entropy in the phase space of a single particle, 
and d Q u _  k = - d 2 X N _ k + l  . . .  d2pN . The SBx and SBp are obtained by further 
reduction of p(l/ to the respective coordinate and momentum spaces of a 
single particle: 

SBx = -- p(xl)(Xl)In p(1)(Xl) d2xl (3.5) 

where 

SBp = -- pp~ p(pX)(pl) d2p~ (3.6) 

p( l ) :  f p(1)(~r~l ) d2pl, f p(1) d2X1 : 1 

p(1): fp(1)(~l)d2x1,  f p ( 1 ) d 2 p l :  l 

The first inequality in (3.3) becomes an equality iff pCN) factorizes into a 
product of N one-particle distributions p(1).(12) It is demonstrated in 
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Appendix B that in the thermodynamic limit N ~  oo (with momentum 
scaling invoked as discussed in detail in Section 3 of ref. 3) this is indeed 
the case for both the canonical and the microcanonical distributions. 

The actual numerical evaluation of SB, SBx, and SBp is complicated by 
a number of facts which require consideration: 

(a) Coarse-grained measures have to be introduced by averaging 
p(1), p(xl), and p(pl) over partitions of their respective spaces. 

(b) N is finite, and we are far from the thermodynamic limit. This 
requires careful assessment of the boundary conditions. For the reflecting 
boundary conditions of Section 2 and in the thermodynamic limit the 
cluster would form precisely in the center of the box. In a finite system and 
in particular in a system with short-range interactions (2.2) the cluster has 
the freedom to float around this point. The (nonequilibrium) entropies 
estimated from a single trajectory therefore lack the proper symmetry. It is 
argued in Appendix B that this will not affect the numerical results 
significantly. 

(c) N =  400 is also too small a number of particles to obtain precise 
estimates for the (nonequilibrium) single-particle distributions from a 
single run. Computational costs have prevented us from carrying out the 
simulation of a whole ensemble of N-particle trajectories~Jistinguished 
only by different initial conditions--in parallel. To improve the statistics, 
we have averaged the distributions over a time interval short compared to 
the relaxation time (see below). 

From this discussion it is obvious that the coarse-grained entropies 
reported below will obey only the inequalities and not the equalities in 
(3.3), as is indeed the case. They are calculated for a finite system and for 
single-particle phase spaces with very rough coarse graining. Their actual 
numbers are not of too much importance. However, their variation with 
time is significant, which make them very useful to understand the time 
evolution of the collapsing systems during the cyclic process of Section 2. 

For the numerical evaluation the coordinate space was partitioned 
into squares of length AL = a requiring 30 x 30 boxes for the initial and 
final homogeneous stages and 46 x 46 boxes for the collapsed stage II. This 
is a coarse partition allowing most of the particles of the main cluster to 
be in a single box. For the momenta local isotropy was assumed and p2 
was subdivided into 40 slices of width Ap 2=3.6. Thus, a maximum of 
84,640 and 2116 phase-space boxes was used for the evaluation of SB and 
SBx, respectively, whereas only 40 boxes sufficed for SBp. Altogether 400 
instantaneous N-particle configurations each separated by lOAt were used 
for the calculation of the coarse-grained densities. Each entropy value is 

822/65/3-4-10 
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actually an average over 10 time units of the trajectory. In view of the very 
long relaxation times, this procedure is adequate. The method therefore 
determines the coarse-grained densities essentially from the time duration 
the particles spend in the various partitions of the single-particle phase 
space. (13) 

The result for the cyclic process is shown in Fig. 5 as a function of 
time. The following remarks are in order: 

(a) SB< SBx+ SBp at any time, in accordance with the discussion 
following (3.3). 

(b) The noise for the entropies SB and SBx involving spatial distribu- 
tions is considerably larger than that of SBp. It is caused by the drift of the 
main cluster over the partition boundaries. The smooth behavior of SBp 
even during violent transient stages is a consequence of local equilibrium 
being established quickly, as observed in ref. 3. 

(c) The small drop of SB (and Ssx+ SBp) during the expansion 
stage I is spurious. It results from an unbalanced treatment of configuration 
and momentum spaces by the (arbitrary) partitioning procedure, and 
should be disregarded. 

(d) As expected, the time dependence of the momentum entropy SBp 
closely reflects that of the kinetic energy K in Fig. 4. Whenever the 
temperature goes down such as during expansion in stage I--also SBp 
strongly decreases. Any temperature increase is accompanied by an 
increase of SBp. 
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Fig. 5. Coarse-grained entropies as a function of time: SB is the Boltzmann entropy, Ssx and 
SBp are space and momentum entropies as described in the text. 
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(e) During equilibration in stage II the spatial entropy SBx decreases 
significantly. This is due to the formation of the main cluster whose par- 
ticles occupy essentially a single box in coordinate space. Similarly, SBx 
increases in stage IV when the cluster dissolves again. The final equilibrium 
value of Sax agrees with its initial equilibrium value. 

(f) Whether an arbitrary reduced entropy increases or decreases in a 
nonequilibrium situation depends very much on the space on which it is 
defined. Thus, SRx, depending solely on position variables, decreases 
during the cluster formation, whereas the complementary SBp, depending 
on momentum variables, increases. The full Boltzmann entropy SB 
increases only slightly. 

(g) The net effect of the complete cyclic process is a (slight) increase 
of SB in accordance with the second law. This increase is solely due to the 
increase of SBp and is reflected by the increase of the system's kinetic 
energy K. 

4. P A S S I V I T Y  

We have seen that the entropy is not very useful for discussing the 
irreversible features of our system. The Gibbs entropy is constant [even 
with an external time-dependent potential W(x, t)] and the coarse-grained 
entropies may increase or decrease. The observer-independent fact seems to 
be the passivity of the system, which means that after a period r of W(x, t) 
the system ends up with a higher energy than at t = 0: it has to be worked 
on rather than doing work. To ease the notation, unnecessary indices and 
boldface vector characterization are omitted in this section. For example, 
H (N) and W(X (N), t) are written as H and W(x, t), respectively. 

Remarks: 

1. The notion of passivity has been introduced by Pusz and 
Woronowicz. (14'1s) In their celebrated paper they showed that the KMS 
(=equilibrium) states are characterized by their passivity against all 
periodic perturbations W(t). We are concerned with a somewhat different 
question, namely, which orbits of pure states are passive for a given W, and 
which are not? 

2. Passivity is equivalent to the statement that the system cannot be 
used as a perpetuum mobile of the second kind. Suppose that at the end 
of the cycle the energy E of the system has been changed to E ' >  E (or 
E' <E). To restore the initial energy E, we have to extract (or feed in) 
heat, and by doing so we will end up at some random point of this 
particular energy shell. If the orbits with E' > E (or E' < E) dominate the 



568 Posch e t  al. 

volume of the energy shell, we can repeat the process with the same out- 
come, and in the first case the system will consume work and produce heat. 
In the second case it is the other way around and we have a perpetuum 
mobile of the second kind. Thus, the impossibility of the latter is equivalent 
to the condition that most orbits are passive ( E ' >  E). 

In our situation the reason for passivity is intuitively clear, since the 
gas is still cold at the expansion phase I and hot at the compression 
phase III. Thus, the pressure on the wall is less during expansion than 
during compression. Nevertheless, one immediately is haunted by the 
following question: Choosing t = 0  appropriately, our W(x, t) is an even 
function oft ,  W(x, t)= W(x , - t ) .  As a consequence, the transformation 
& (xi, p/) ~ (xi, -p~) reverses the motion and preserves the volume dr2 of 
phase space: c~-,=~9o~,o& Thus, one may assert that there are just as 
many points in phase space with passive orbits [-E(~)>E(0)] as with 
active orbits [E(v)<E(0) ] ,  ~ being the period of the cycle. Nevertheless, 
picking random initial conditions, we always get passive orbits and never 
stumble on active orbits. We shall devote this section to the resolution of 
this (apparent) paradox, since it shows to what extent a perpetuum mobile 
of the second kind is impossible. To our knowledge this problem has never 
been discussed in the light of passivity. 

Now, H+ W(x, t), W(x, t + z ) =  W(x, t )=  W(x, - t ) ,  induces a family 
of measure-preserving transformations ~, in phase space f2 which carries H 
into Hocq. Denote the passive (resp. active) sets 5Pp,,(~)= {z~f2: 
H(z) ~ Hoe+(z)}. Since H is invariant under 0, we see that #o e , (@)=  ~ :  

H(z)=Ho~lo~+(z)=Ho3o~+oOo~+(z)=Ho~+(Oo~+(z)) (4.1) 

Since Ho ~+(z) = Ho 0 o ~+(z), we note 

H(z) N Ho ~(z) ~ Ho ~+(Oo ~+(z)) % H(O o ~+(z)) 

such that 

(4.2) 

~,(~+) = O o ~+(~(~+)) 

is a measure-preserving bijection, this proves our assertion. Since 0 o e+ 
Thus, if for a given energy shell 5~E = {z e f2: H(z) = E} the measure of its 
points eSPp which at the time ~ have an energy E' > E is/~(E, E'), then the 
measure of the active points of 5~e, which after ~ have the energy E < E' is 
exactly the same, ~(E, E') = #(E', E): 

#(E, E')= f dE2 6 (H-E)  6(Ho ~z+-E') 

= f dE2 6(Ho O--E) 8(Ho oQ -1 o8 -E ' )  

= f dr2 6(Ho ~+ - E) 3 ( H -  E') (4.3) 
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since 0 and e~ are measure-preserving bijections. However, the measure of 
5e E increases rapidly with E and the measure #p of all passive points with 
energy below E o will dominate the measure #a of the active points. Taking 
H )  0, we have 

#a=f~~ dE' #(E,E') 

and 

#p= f~o dE f~ dE'#(E,E') 

= #~ + o dE dE' #(E, E') 

dE' u(E, E') 

(4.4) 

The more the last integral exceeds #u, the less likely it is that one will find 
passive points below a given energy Eo. The explicit evaluation of/~(E, E') 
for our system is beyond our means. However, at the risk of making this 
paper bulky, we shall study these phenomena at a simple example where 
everything can be evaluated analytically. 

E xa mpl e  4.1. We start with one particle in one dimension and 
replace the wall potential by a harmonic potential. For the expansion and 
compression phase we make the sudden approximation and take 

2 I ('02 15 
H = 2 +  W(x, t), W(x, t ) =  -~-x2 for It] < ~ ,  

~x 2 for ~<t~<~, 
e ) > l  

and W(x, t ) =  W(x, - t ) ,  W(x, t + r ) =  W(x, t). Thus, at the expanded 
phase the motion is on the circles p2+ x2= 2E and in the compressed 
phase on ellipses pZ+~oZx2=2E' (Fig. 6). If at the compression time 
t = - z / 4  we have p = 0 ,  then the particle will move outside the circle 
p2 + x 2 = 2E till t = r/4 and we shall have p2(~/4) + x2(r/4) = 2E' > 2E. On 
the other hand, if x ( - ~ / 4 ) =  0, the ellipse is inside the circle and p2(r/4)+ 
x2('r/4)-= 2 E ' <  2E. After expansion at time t = z/2 the particle moves on a 
circle p2+ x2= 2E', and the total change of energy during a full cycle of 
the potential W with period ~ is 6E=E' -E .  To draw the borderline 
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Fig. 6. Phase space for the periodically perturbed harmonic oscillator in Example 4.l. The 
straight lines g: p = ( - 7  + (7 2 + 1)1/2) c o x  and g': p = ( -7  - (7 2 + 1) ~/2) cox, ,/= cot ~or/2, 
separate active and passive regions. Active regions are shaded. 

between the active and the passive regions, we recall that the time develop- 
ment for t = -r/4 to t = ~/4 is 

( co~ e)~ co~ c o s t  co~) (x,p)-+ x cos-~- + P sin - cox sin + 
T '  T p 

where ( x ( - ~ / 4 ) , ,  p ( - ~ / 4 ) =  (x, p)). The change of energy 

3 E =  ~ [ p 2  ( 4 ) - l - X 2  ( 4 ) - - P C - - X 2 1  = ~ ( 1 - - 5 )  I p2 ( 4 ) - - P 2 1  

1 1 - 7  (xaco2_p2) sin2_~__2pxoosln~co s 
2 

6E vanishes on the lines p=cox[-7+_(72+l)m], 7=cot te r /2 .  The 
regions closer to the p axis are active (the shaded region in Fig. 6), the 
complementary ones are passive. The circle p2+ x2= 2E is dominated by 
passive regions if e > ~/2 (Fig. 6), which is always true irrespective of ? 
(that is, r), as the scalar product of the boundary vectors is negative: 

Observe that 6E has a factor (1 - 1/o92). So the same conclusion holds for 
co < 1, which means that also the energy of the expanded phase is likely to 
increase. 
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So far we have seen that in the simple example, on each energy shell 
the active regions are smaller than the passive ones. Actually we want 
much more for the physical systems in the thermodynamic limit: the active 
region should be completely negligible. This is a typical feature of the 
thermodynamic limit N ~ o% where usually the volume of the energy shell 
obeys 

l o d E  I~(E, E') ~ e N~(e) 

Here, a is the entropy per particle, and e = E/N. Thus, one expects an 
exponential dependence of p(E, E') on N, and in the limit N--* oo the ratio 
#a(Ne)/l~p(Ne)-*e -Nf(~ with f > 0 .  We shall not attempt to demonstrate 
this claim for the unstable system studied in this paper because we believe 
that the considerations of this section are more general and apply to stable 
and unstable systems alike. The reason for this seems to be that the energy 
is semibounded from below. This offers far more possibilities for absorbing 
energy than for giving energy off and makes the physical systems passive. 
For  the sake of completeness we calculate p(E, E') explicitly for N 
noninteracting harmonic oscillators subjected to the same external periodic 
perturbation as in the preceding example. 

Example 4.2. We have 

+ 

W(x, t) is from Example 4.1. To evaluate (4.3), we observe that 

H o  ~ = �89 2 + 2bxp  + c x  2) = �89  

with z ' =  (p, x), z = (P), and 

a = c o s  --~-+~-ssln ~ - ,  b =  --CO 

0)17 O)T 
c = cos 2 ~ -  + ~o 2 sin 2 -~- 

(DT (LIT 
cos -~- sin -~- 

The matrix 
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is measure preserving and thus det M =  1. Its eigenvalues are m and I/m, 
with 

a + c  2 1  
m = ~ - +  

Introducing the integral representation for the 6-function, we find for 
even N [O(x) i s the  step function = 1 for x > 0, = 0  otherwise] 

f ( ~ 1 )  (j_~ 1 ) # ( E , E ' ) =  d2Nz 6 -~ z2-- E 6 ~ z jMzj-  E' 
j t 1 

= (2~) 2 exp # 
-or  j 1 

+ it ~ zjMzj - E' d2Uz 
1 

= l i m f  ~ dsdt-~(,e+te'~( 2~ ,~u/2( 2~ ~U/2 
~+0 _~ (2~) -----Se s+tm+i~/  s+t-f-m+i~/ 

=l im 1_ 1 foo dv du(2~)N/(2~)2 
e+o m -  /m (U"[-ig) N/2 ( o + i g )  N/2 

[ m2E-mE ' m E ' - E ]  
x exp - iv m 2 -- 1 iu m2 _ 1 J 

m (27c) N 
- m  2 -  1 [ ( N / Z -  1)!3 2 0 ( E m - E ' )  O(E'm-E) 

raN~2 1 
X ( E - - m E ' )  u/2 1 (E,  m E ) N / 2 - 1  ( m 2 -  1) u - 2  

To arrive at this result, we first used the formula for Gaussian integrals and 
then applied the residue theorem. This function has its maximum for E"  = 
[(1 + m2)/2m]E> E and thus the passive region E' > E is favored. In fact, 

# ( E , E ' ) _ ( I  +m'] N-2 
I~(E, E) \2---~J 

and since (1 + m)/2 > x/-m, this ratio increases exponentially with N. 

5. C O N C L U S I O N S  

The computer simulation verified our conjecture that the expansion of 
a gas of particles with unstable interactions leads to hot clusters. The 
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difference from stable interactions is that in the latter case the condensed 
phase remains at the same temperature. Conversely, by compression the 
temperature first increases, but then decreases again due to the evaporation 
of the clusters. Nevertheless, at the end of a complete expansion-compres- 
sion cycle the total energy is higher than at the beginning, which also leads 
to a net increase of the entropy. The increase of energy in a cyclic process 
which is not completely adiabatic has been named passivity and seems to 
be a key feature of many-body systems. In a simple model we found that 
below a fixed energy shell for each particle the fraction f of the volume in 
phase space which is not passive is <50%.  Thus, for a many-particle 
system I f / (1 - - f ) ]N--+0  for N--+ 0o. Since the phase space in this case is 
simply a product of spaces such as Fig. 6, the active regions of phase space 
violating the second law of thermodynamics are similar to a Cantor set in 
the thermodynamic limit. Their relative volume goes to zero. A similar 
result has been obtained recently for finite systems in nonequilibrium 
steady states for which the accessible phase space shows a multifractal 
structure. (16'17) The volume occupied by states violating the second Jaw 
vanishes also in this case. 

A P P E N D I X  A. REDUCED ENTROPIES 

Let p(z), pl(z)  be probability distributions over the phase space f2 ~ z. 
The basic fact is the positivity of the relative entropy 

S(pl [ p ) : = f d f 2 p ( l n p - l n p l ) > > . O  (A.1) 

This follows from S dO p = ~ d~2 pl = 1 and the inequality In x/> 1 - l/x. If 
Pl is of the canonical form 

pl(z)  = exp [ - f iH(z )  + fl( H )  p, - S(pl)] 

where 

and 

( H ) o  I = f dr2 pl(Z) H(z) 

then (A.1) implies 

S(pl)  = -- f d~2 p,(z)  in pl(Z) 

0 ~ S ( p  1 ) - -  S ( p ) -  j~(H)p I + f i ( H ) p  (A.2)  
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(A.2) is the general form of the variational principle, which says that 
among the densities p with expectation value of H less than or equal to 
~ H ) p  I the canonical p~ has the highest entropy. Conversely, one can say 
that among the densities with entropy >>.S(pl) the canonical p~ gives the 
lowest expectation value of H. 

If O is a product space, z = (x, y), dO = dx dy and we define reduced 
densities pl(x)= ~ dy p(x, y), p2(y)= S dx p(x, y), and pl2(x, y ) =  
pm(X) Pz(Y), then S(pl2[P)>/0 implies the subadditivity 

s(p) ~ S(pi2) = S(pl) + s(p2) (A.3) 

If, in addition, p is canonical ~ e  -~/J we have bounds on both sides 

o <. S(pm) + s(p2) - s(p) <<./~<H>~,~-/~< Lr> ~ 

[ dx dy H(x, y)[p~(x) P2(Y) - p(x, y) ]  (a.4) 
o 

Remarks: 

1. In (A.1) equality holds iff p = Pl, since In x > 1 - 1Ix unless x = 1. 

2. If pl(x)>~p(x, y) and thus - l n p ( x ,  y)~> - l n p ( x ) ,  Vy, then we 
get the monotonicity S(p)>~S(pl). For discrete measures this is always 
satisfied. 

3. (A.3) obviously generalizes if O is an N-fold product 
z = (xl,  x2,..., X~v). In particular, if p is symmetric, 

S(p ) <~ mS(p ~ ) (A.5) 

with =iff  p(xm,..., XN) = U I l j=x  pl(xs). 

Inequalities in both directions can be inferred by the following general 
consideration. 

If we fix the expectation value of some observables Ai, 
S dz p(z)As(z)= ai, among such p's the one with the highest entropy is 

Pl(z)=exp[-~3iA,(z)]/fdO'exp[-~sAs(z')} 
The fli are to be chosen such that ~dQpl(z)As(z)=as. This optimal 
property is again a consequence of (A.1): 

O<~S(p~ I P) 

= - S ( p )  + S ( p , )  



Externally Perturbed Unstable Systems 575 

If p is also of the canonical form ~ e  -~H, the S(plpl)>~O supplies the 
other bound 

0 <~ S(pl) - S(p) <~ f i ( ( H } p , -  (H)p) (a.6) 

In particular, (H}o  ~ = (H}p  ~ S(pl) = S(p). 

Remarks :  

1. (A.2) can be considered as a special case of (A.6) if i-~ (2,)5), 
A i ( - x , y ) ~ 6 ( x - 2 ) ,  and 6 ( y - ~ ) ,  Y ' , i ~ d f + ~ d f : ;  p=pl(x)p2(y)  is 
thus the density with highest entropy, given the reduced densities p~ 
and P2. 

2. All these results generalize directly to the quantum mechanical 
situation with ~ dE2 --, Tr and the p's become density matrices. Note that for 
the generalized variational principle (A.6). to hold, it is not necessary to 
assume that the A i commute. Also, in the quantum mechanical context 
(A.4) may be used to determine the accuracy of a one-particle description. 

3. In the classical folklore on the subject (see ref. 18) one finds a 
theorem which states that the entropy of the coarse-grained density 
(matrix) increases with time. The proof boils down to the following. Let fi 
be a coarse-graining of p which implies S(fi)>~S(p). Now evolve p 
(unitarily) with time such that S(p(t))=S(p(O)). If we take a coarse 
graining compatible with p for t = 0, fi(0)= p(0), we get 

S(f i(  t ) ) >i S(p(  t ) ) = S(p(  O ) ) = S(f i (  O ) ) 

Though mathematically impeccable, the proof cannot be useful. 
Nothing has been assumed about the unitary time evolution. It could very 
well be strictly periodic, in which case S(fi) has to return to its original 
value. The flaw in the demonstration is that p(t) will not be compatible 
with coarse graining such that S(fi(t'))<~S(fi(t)) for t '> t  cannot be 
excluded. 

A P P E N D I X  B. R E L E V A N C E  OF T H E  B O L T Z M A N N  E N T R O P Y  

We have already noticed that the entropy calculated from the one- 
particle density, the Boltzmann entropy SB, gives an upper bound to S/N, 
where S is the N-particle Gibbs entropy. It remains to show that for the 
equilibrium states of our unstable systems Boltzmann entropy and Gibbs 
entropy per particle coincide, or equivalently, the reduced n-particle 
distribution p, factorizes, n ~< N, 

pn(X,, Pn)=  Pl(Xt, p~).-" pl(Xn, Pn) 
(B.1) 

X~ = (Xl ..... x~), P .  = (Pl ..... P~) 
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The microcanonical expectation value of a dynamical variable f (X, ,  Pn) 
defines p,: 

co(f) = f p.(Xn, P,~) f(X,,, Pn) dX,, dP.  (B.2) 

It is obtained from the microcanonical N-body distribution p (N) according 
to 

co( f )=l imoof  p(~N)(X~,x/NP~)f(X~,P~)dX,  dP ~ (B.3) 

where an appropriate momentum scaling is required to perform the 
thermodynamic limit, which is discussed in detail in Section 3 of ref. 3. 
Neglecting boundary effects (W= 0), we rewrite the Hamiltonian (2.1) 

~,, N 1 N 

P~ + ~ ( x ~ ) ,  ~ ( x ~ ) =  - Z Z HN= ~mm 
i=1  i = l  j = i + l  

KV(Xi, Xj) 

a s  

where 

n~= y-~m+C(xN .)+ ~ +(xi, X~_.)++(x.) 
i=1  i=1  

N 

~(x.  XN . ) = - ~ c  • v(xi, x~) 
l = N - - n + l  

Insertion of the microcanonical N-particle density into (B.3) yields 

co(f) = lim CN f dXN dPNf(Xn,  Pn) 
N ~  

• a 5-~-m + ~ ( x . )  + ~(x~_~)  + ~(x,, x ~ _ ~ ) -  E~ 
i i i=1  

The normalization constant c N is determined from co(l)= 1. Carrying out 
dPu_n = ~ l-[ N_ u-n +1 d2P,, one obtains 

co(S)= lim Cu,.f dX. dP.S(X.,P.) f dX~_. 
N~cx3 

, : ,  + 
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The various energy terms scale according to EN-~eN 2, qS(XN_n)~N 2, 
~b(x~, X N - , ) ~ N ,  and 45(X,)= O(1). Thus, 

( ~.~ [Np~/2m + ~b(x+, X N _ n ) ]  -~ q~(Xn)) N - h i  
Nlim+ 1 - - i = l  

+ ~N 2 -  ~(X N n) 

= lim exp --fi(XN_,) + ~b(x+,XN ,) (B.4) 
N~oo  i=1 

with 
N 2 

lim (B.5) N~ ~ eN 2 -- q~(XN_.) --lim fl(Xu_,) ~ O(1) 

This gives 

CN, nf dXu n[8N2--qS(XN_,,)] N-" l fdXndP, f(Xn, pn) co(f) = ulim+ 

x exp --fl(XN_,) ~ + ~ b ( x , ,  XN-n) (B.6) 
i = l  

Next, we consider the effect of the boundary: With repelling boundary con- 
ditions eN 2 -  ~b(XN_n) has a unique maximum at XN-n which dominates 
the integrand of ~ dXN_n with correction terms of order e u (we avoid 
critical values of the energy where phase transitions might occur). With 
periodic boundary conditions, for each maximum of eN2--q~(XN_,,) at 
XN-,  there is a maximum at 'XN-, + a as well, where a is an arbitrary two- 
dimensional vector in the configuration space of a single particle. But apart 
from this translational invariance, the maximum is unique: fl(XN ~ + a )=  
f l ( X N _ n ) .  For a fixed maximizing X N  n we define 

_ 1 

2irn  ~b(x+, XN n)~=q~(x,) 

Furthermore, 

lim ~ v (x+ ,xg) l=0  
N ~ o o  i , j = l  N 

For repelling boundaries one finally obtains from (B.3) and (B.6) 

p~(X~, P~)= lira CN, n f d X  N n[SN2--q~(XN_n)]  N - n - 1  
N~cxD 

i 
i = l  
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w h i c h - - t o g e t h e r  with the necessary no rma l i za t ion  condi t ions  for the 
var ious  densit ies  p n - - p r o v e s  (B.1). 

F o r  per iodic  b o u n d a r y  condi t ions  one finds accord ing ly  

Pn(Xn, P n ) ~ f  d 2 a f  d X n d P n f ( X n ,  Pn) ~=lex - f i  + ~ ( x i - a )  

- f d2a coo(f) 

The d i s t r ibu t ion  con t r ibu t ing  to coa(f)  factorizes again  a n d ~ f o r  a given 
a - - t h e  equal i ty  SB(a) = S ( a ) / N  holds  in the l imit  N ~ oe. 
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